资源类型

期刊论文 327

会议视频 3

年份

2024 1

2023 22

2022 32

2021 25

2020 26

2019 27

2018 13

2017 24

2016 15

2015 14

2014 10

2013 8

2012 16

2011 7

2010 12

2009 8

2008 18

2007 23

2006 5

2005 4

展开 ︾

关键词

2035 1

3D打印 1

60 GHz;天线阵列;线极化;圆极化;毫米波 1

Au/Ti双功能催化剂 1

BFT 1

COVID-19 1

Cu(Inx 1

DNA组装 1

EFP 1

Ga1–x)Se2 1

Grade 91钢 1

H2O/CO2共电解 1

H2有效利用率 1

IKPCA 1

KPCA 1

MTO 1

Nelder-Mead单纯形法 1

TBM 刀盘设计 1

展开 ︾

检索范围:

排序: 展示方式:

Applications of traditional pump design theory to artificial heart and CFD simulation

WANG Yingpeng, SONG Xinwei, YING Chuntong

《能源前沿(英文)》 2008年 第2卷 第4期   页码 504-507 doi: 10.1007/s11708-008-0059-5

摘要: A novel heart pump model was obtained by improving the traditional axial pump design theory with the consideration of working and hydraulic situations for artificial hearts. The pump head range and the velocity triangle were introduced and an iterative approach was utilized for the initial model. Moreover, computational fluid dynamics (CFD) simulations were performed to determine relevant model parameters. The results show that this procedure can be used for designing a series of high-efficiency artificial heart pumps.

关键词: computational     high-efficiency artificial     iterative approach     artificial     traditional    

XFEM schemes for level set based structural optimization

Li LI, Michael Yu WANG, Peng WEI

《机械工程前沿(英文)》 2012年 第7卷 第4期   页码 335-356 doi: 10.1007/s11465-012-0351-2

摘要:

In this paper, some elegant extended finite element method (XFEM) schemes for level set method structural optimization are proposed. Firstly, two- dimension (2D) and three-dimension (3D) XFEM schemes with partition integral method are developed and numerical examples are employed to evaluate their accuracy, which indicate that an accurate analysis result can be obtained on the structural boundary. Furthermore, the methods for improving the computational accuracy and efficiency of XFEM are studied, which include the XFEM integral scheme without quadrature sub-cells and higher order element XFEM scheme. Numerical examples show that the XFEM scheme without quadrature sub-cells can yield similar accuracy of structural analysis while prominently reducing the time cost and that higher order XFEM elements can improve the computational accuracy of structural analysis in the boundary elements, but the time cost is increasing. Therefore, the balance of time cost between FE system scale and the order of element needs to be discussed. Finally, the reliability and advantages of the proposed XFEM schemes are illustrated with several 2D and 3D mean compliance minimization examples that are widely used in the recent literature of structural topology optimization. All numerical results demonstrate that the proposed XFEM is a promising structural analysis approach for structural optimization with the level set method.

关键词: structural optimization     level set method     extended finite element method (XFEM)     computational accuracy and efficiency    

Improved numerical method for time domain dynamic structure-foundation interaction analysis based on scaled boundary finite element method

DU Jianguo, LIN Gao

《结构与土木工程前沿(英文)》 2008年 第2卷 第4期   页码 336-342 doi: 10.1007/s11709-008-0054-2

摘要: Based on the reduced set of base function in scaled boundary finite element method (SBFEM), an improved time domain numerical approach for the dynamic structure-foundation interaction analysis was proposed. With reasonable choice of the number of base functions, the degrees of freedom on the structure-foundation interface were reduced and the associated computation for the calculation of convolution integral was greatly reduced. The results of this proposed approach applied to the calculation of a gravity dam and an arch dam. The acceleration frequency response functions were calculated and the influences affected by different reduced set of base functions as well as full set were compared. It was found that a higher degree of reduced set of base functions resulted in a significant increase of computational efficiency but a little bit of loss in accuracy. When the reduced set was decreased by 60%, the efficiency may be increased to up to five times, while the loss of accuracy of peak value of response will be less than 4%. It may be concluded that the proposed approach is suitable for large-scale structure-foundation interaction analysis.

关键词: structure-foundation interface     computational efficiency     different     suitable     numerical approach    

Challenges of high dam construction to computational mechanics

ZHANG Chuhan

《结构与土木工程前沿(英文)》 2007年 第1卷 第1期   页码 12-33 doi: 10.1007/s11709-007-0002-6

摘要: The current situations and growing prospects of China s hydro-power development and high dam construction are reviewed, giving emphasis to key issues for safety evaluation of large dams and hydro-power plants, especially those associated with application of state-of-the-art computational mechanics. These include but are not limited to: stress and stability analysis of dam foundations under external loads; earthquake behavior of dam-foundation-reservoir systems, mechanical properties of mass concrete for dams, high velocity flow and energy dissipation for high dams, scientific and technical problems of hydro-power plants and underground structures, and newly developed types of dam-Roll Com pacted Concrete (RCC) dams and Concrete Face Rock-fill (CFR) dams. Some examples demonstrating successful utilizations of computational mechanics in high dam engineering are given, including seismic nonlinear analysis for arch dam foundations, nonlinear fracture analysis of arch dams under reservoir loads, and failure analysis of arch dam-foundations. To make more use of the computational mechanics in high dam engineering, it is pointed out that much research including different computational methods, numerical models and solution schemes, and verifications through experimental tests and filed measurements is necessary in the future.

关键词: reservoir     engineering     hydro-power development     state-of-the-art computational     earthquake    

Investigation of carbon dioxide photoreduction process in a laboratory-scale photoreactor by computational

《化学科学与工程前沿(英文)》 2022年 第16卷 第7期   页码 1149-1163 doi: 10.1007/s11705-021-2096-0

摘要: The production of solar fuels via the photoreduction of carbon dioxide to methane by titanium oxide is a promising process to control greenhouse gas emissions and provide alternative renewable fuels. Although several reaction mechanisms have been proposed, the detailed steps are still ambiguous, and the limiting factors are not well defined. To improve our understanding of the mechanisms of carbon dioxide photoreduction, a multiphysics model was developed using COMSOL. The novelty of this work is the computational fluid dynamic model combined with the novel carbon dioxide photoreduction intrinsic reaction kinetic model, which was built based on three-steps, namely gas adsorption, surface reactions and desorption, while the ultraviolet light intensity distribution was simulated by the Gaussian distribution model and Beer-Lambert model. The carbon dioxide photoreduction process conducted in a laboratory-scale reactor under different carbon dioxide and water moisture partial pressures was then modeled based on the intrinsic kinetic model. It was found that the simulation results for methane, carbon monoxide and hydrogen yield match the experiments in the concentration range of 10−4 mol·m–3 at the low carbon dioxide and water moisture partial pressure. Finally, the factors of adsorption site concentration, adsorption equilibrium constant, ultraviolet light intensity and temperature were evaluated.

关键词: carbon dioxide photoreduction     computational fluid dynamic simulation     kinetic model     Langmuir adsorption    

AMMONIA DISPERSION FROM MULTI-FLOOR VERSUS STANDARD SINGLE-FLOOR PIG PRODUCTION FACILITIES BASED ON COMPUTATIONAL

《农业科学与工程前沿(英文)》 2023年 第10卷 第3期   页码 374-389 doi: 10.15302/J-FASE-2023501

摘要:

● NH3 dispersion from a multi-floor pig building was compared to a single-floor building.

关键词: pig building     computational fluid dynamics     ammonia     dispersion    

Computational fluid dynamics simulation of aerosol transport and deposition

Yingjie TANG, Bing GUO

《环境科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 362-377 doi: 10.1007/s11783-011-0365-8

摘要: In this article computational fluid dynamics (CFD) simulation of aerosol transport and deposition, i.e. the transport and deposition of particles in an aerosol, is reviewed. The review gives a brief account of the basics of aerosol mechanics, followed by a description of the general CFD approach for flow field simulation, turbulence modeling, wall treatments and simulation of particle motion and deposition. Then examples from the literature are presented, including CFD simulation of particle deposition in human respiratory tract and particle deposition in aerosol devices. CFD simulation of particle transport and deposition may provide information that is difficult to obtain through physical experiments, and it may help reduce the number of experiments needed for device design. Due to the difficulty of describing turbulent flow and particle-eddy interaction, turbulent dispersion of particles remains one of the greatest challenges for CFD simulation. However, it is possible to take a balanced approach toward quantitative description of aerosol dispersion using CFD simulation in conjunction with empirical relations.

关键词: computational fluid dynamics (CFD)     aerosol     transport     deposition    

Introduction to the special section on the Symposium on Computational Fluid Dynamics and Molecular Simulation

Tianwei TAN, Peiyong QIN,

《化学科学与工程前沿(英文)》 2010年 第4卷 第3期   页码 241-241 doi: 10.1007/s11705-009-0285-3

The effect of different agricultural management practices on irrigation efficiency, water use efficiency

La ZHUO, Arjen Y. HOEKSTRA

《农业科学与工程前沿(英文)》 2017年 第4卷 第2期   页码 185-194 doi: 10.15302/J-FASE-2017149

摘要: This paper explores the effect of varying agricultural management practices on different water efficiency indicators: irrigation efficiency (IE), crop water use efficiency (WUE), and green and blue water footprint (WF). We take winter wheat in an experimental field in Northern China as a case study and consider a dry, average and wet year. We conducted 24 modeling experiments with the AquaCrop model, for all possible combinations of four irrigation techniques, two irrigation strategies and three mulching methods. Results show that deficit irrigation most effectively improved blue water use, by increasing IE (by 5%) and reducing blue WF (by 38%), however with an average 9% yield reduction. Organic or synthetic mulching practices improved WUE (by 4% and 10%, respectively) and reduced blue WF (by 8% and 17%, respectively), with the same yield level. Drip and subsurface drip irrigation improved IE and WUE, but drip irrigation had a relatively large blue WF. Improvements in one water efficiency indicator may cause a decline in another. In particular, WUE can be improved by more irrigation at the cost of the blue WF. Furthermore, increasing IE, for instance by installing drip irrigation, does not necessarily reduce the blue WF.

关键词: field management     irrigation efficiency     water footprint     water productivity     water use efficiency    

A time−space porosity computational model for concrete under sulfate attack

《结构与土木工程前沿(英文)》 doi: 10.1007/s11709-023-0985-7

摘要: The deterioration of the microscopic pore structure of concrete under external sulfate attack (ESA) is a primary cause of degradation. Nevertheless, little effort has been invested in exploring the temporal and spatial development of the porosity of concrete under ESA. This study proposes a mechanical–chemical model to simulate the spatiotemporal distribution of the porosity. A relationship between the corrosion damage and amount of ettringite is proposed based on the theory of volume expansion. In addition, the expansion strain at the macro-scale is obtained using a stress analysis model of composite concentric sphere elements and the micromechanical mean-field approach. Finally, considering the influence of corrosion damage and cement hydration on the diffusion of sulfate ions, the expansion deformation and porosity space−time distribution are obtained using the finite difference method. The results demonstrate that the expansion strains calculated using the suggested model agree well with previously reported experimental results. Moreover, the tricalcium aluminate concentration, initial elastic modulus of cement paste, corrosion damage, and continuous hydration of cement significantly affect concrete under ESA. The proposed model can forecast and assess the porosity of concrete covers and provide a credible approach for determining the residual life of concrete structures under ESA.

关键词: expansion deformation     porosity     internal expansion stress     external sulfate attack     mechanical–chemical coupling model    

Stormwater treatment: examples of computational fluid dynamics modeling

Gaoxiang YING, John SANSALONE, Srikanth PATHAPATI, Giuseppina GAROFALO, Marco MAGLIONICO, Andrea BOLOGNESI, Alessandro ARTINA

《环境科学与工程前沿(英文)》 2012年 第6卷 第5期   页码 638-648 doi: 10.1007/s11783-012-0442-7

摘要: Control of rainfall-runoff particulate matter (PM) and PM-bound chemical loads is challenging; in part due to the wide gradation of PM complex geometries of many unit operations and variable flow rates. Such challenges and the expense associated with resolving such challenges have led to the relatively common examination of a spectrum of unit operations and processes. This study applies the principles of computational fluid dynamics (CFD) to predict the particle and pollutant clarification behavior of these systems subject to dilute multiphase flows, typical of rainfall-runoff, within computationally reasonable limits, to a scientifically acceptable degree of accuracy. The Navier-Stokes (NS) system of nonlinear partial differential equations for multi-phase hydrodynamics and separation of entrained particles are solved numerically over the unit operation control volume with the boundary and initial conditions defined and then solved numerically until the desired convergence criteria are met. Flow rates examined are scaled based on sizing of common unit operations such as hydrodynamic separators (HS), wet basins, or filters, and are examined from 1 to 100 percent of the system maximum hydraulic operating flow rate. A standard turbulence model is used to resolve flow, and a discrete phase model (DPM) is utilized to examine the particle clarification response. CFD results closely follow physical model results across the entire range of flow rates. Post-processing the CFD predictions provides an in-depth insight into the mechanistic behavior of unit operations by means of three dimensional (3-D) hydraulic profiles and particle trajectories. Results demonstrate the role of scour in the rapid degradation of unit operations that are not maintained. Comparisons are provided between measured and CFD modeled results and a mass balance error is identified. CFD is arguably the most powerful tool available for our profession since continuous simulation modeling.

关键词: stormwater     unit operations and processes (UOPs)     hydrodynamic separation     filtration     adsorption     computational fluid dynamics (CFD)     turbulence modeling     discrete phase model     particle separation     detention/retention basins     clarification    

Confinement effects in methanol to olefins catalysed by zeolites: A computational review

German Sastre

《化学科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 76-89 doi: 10.1007/s11705-016-1557-3

摘要: Small pore zeolites, containing 8-rings as the largest, are widely employed as catalysts in the process of methanol-to-olefins (MTO). Reactants and products diffuse with constraints through 8-rings and this is one of the reaction bottlenecks related to zeolite micropore topology. Small pore zeolites and silicon-aluminophosphates(SAPOs) containing cavities, where olefins are mainly formed through the hydrocarbon pool (HP) mechanism, are frequently tested for MTO. Shape selectivity of transition states within the side-chain methylation will be reviewed as this is one of the controlling steps of the MTO process, with particular attention to the role of hexamethylbenzene (HMB) and heptamethylbenzenium cation (HeptaMB ), which are the most tipically detected reaction intermediates, common to the paring and side-chain routes within the HP mechanism. The relative stability of these and other species will be reviewed in terms of confinement effects in different cage-based zeolites. The role of the different alkylating agents, methanol, dimethyl ether (DME), and surface methoxy species (SMS) will also be reviewed from the computational viewpoint.

关键词: small pore zeolites     SAPOs     methanol-to-olefins     hydrocarbon pool mechanism     alkylation of polymethylbenzenes    

Evaluating R&D efficiency of China’s listed lithium battery enterprises

《工程管理前沿(英文)》   页码 473-485 doi: 10.1007/s42524-022-0213-5

摘要: Promoting the growth of the lithium battery sector has been a critical aspect of China’s energy policy in terms of achieving carbon neutrality. However, despite significant support on research and development (R&D) investments that have resulted in increasing size, the sector seems to be falling behind in technological areas. To guide future policies and understand proper ways of promoting R&D efficiency, we looked into the lithium battery industry of China. Specifically, data envelopment analysis (DEA) was used as the primary approach based on evidence from 22 listed lithium battery enterprises. The performance of the five leading players was compared with that of the industry as a whole. Results revealed little indication of a meaningful improvement in R&D efficiency throughout our sample from 2010 to 2019. However, during this period, a significant increase in R&D expenditure was witnessed. This finding was supported, as the results showed that the average technical efficiency of the 22 enterprises was 0.442, whereas the average pure technical efficiency was at 0.503, thus suggesting that they were suffering from decreasing returns to scale (DRS). In contrast, the performance of the five leading players seemed superior because their average efficiency scores were higher than the industry’s average. Moreover, they were experiencing increasing scale efficiency (IRS). We draw on these findings to suggest to policymakers that supporting technologically intensive sectors should be more than simply increasing investment scale; rather, it should also encompass assisting businesses in developing efficient managerial processes for R&D.

关键词: Data Envelopment Analysis     R&D investment efficiency     China’s listed lithium battery enterprises     technical efficiency     pure technical efficiency     scale efficiency    

An investigation of ballistic response of reinforced and sandwich concrete panels using computational

Mohammad HANIFEHZADEH, Bora GENCTURK

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1120-1137 doi: 10.1007/s11709-019-0540-8

摘要: Structural performance of nuclear containment structures and power plant facilities is of critical importance for public safety. The performance of concrete in a high-speed hard projectile impact is a complex problem due to a combination of multiple failure modes including brittle tensile fracture, crushing, and spalling. In this study, reinforced concrete (RC) and steel-concrete-steel sandwich (SCSS) panels are investigated under high-speed hard projectile inpact. Two modeling techniques, smoothed particle hydrodynamics (SPH) and conventional finite element (FE) analysis with element erosion are used. Penetration depth and global deformation are compared between doubly RC and SCSS panels in order to identify the advantages of the presence of steel plates over the reinforcement layers. A parametric analysis of the front and rear plate thicknesses of the SCSS configuration showed that the SCSS panel with a thick front plate has the best performance in controlling the hard projectile. While a thick rear plate is effective in the case of a large and soft projectile as the plate reduces the rear deformation. The effects of the impact angle and impact velocity are also considered. It was observed that the impact angle for the flat nose missile is critical and the front steel plate is effective in minimizing penetration depth.

关键词: concrete panels     projectile impact     finite element modeling     smoothed particle hydrodynamics     strain rate effect    

Improving the efficiency and effectiveness of global phosphorus use: focus on root and rhizosphere levels

null

《农业科学与工程前沿(英文)》 2019年 第6卷 第4期   页码 357-365 doi: 10.15302/J-FASE-2019275

摘要:

Phosphorus (P) is essential for life and for efficient crop production, but global P use with limited recycling is inefficient in several sectors, including agronomy. Unfortunately, plant physiologists, agronomists, farmers and end users employ different measures for P use efficiency (PUE), which often masks their values at different scales. The term P use effectiveness, which also considers energetic and sustainability measures in addition to P balances, is also a valuable concept. Major physiological and genetic factors for plant P uptake and utilization have been identified, but there has been limited success in genetically improving PUE of modern crop cultivars. In maize, studies on root architectural and morphological traits appear promising. Rhizosphere processes assist in mobilizing and capturing sparingly soluble phosphate from rock phosphate. Combinations of phosphate-solubilizing microorganisms with ammonium-based nitrogen fertilizer, as well as strategies of fertilizer placement near the roots of target crops, can moderately enhance PUE. The desired concentration of P in the products differs, depending on the final use of the crop products as feed, food or for energy conversion, which should be considered during crop production.

关键词: acquisition efficiency     plant growth promoting rhizobacteria     phosphate     use efficiency     utilization efficiency    

标题 作者 时间 类型 操作

Applications of traditional pump design theory to artificial heart and CFD simulation

WANG Yingpeng, SONG Xinwei, YING Chuntong

期刊论文

XFEM schemes for level set based structural optimization

Li LI, Michael Yu WANG, Peng WEI

期刊论文

Improved numerical method for time domain dynamic structure-foundation interaction analysis based on scaled boundary finite element method

DU Jianguo, LIN Gao

期刊论文

Challenges of high dam construction to computational mechanics

ZHANG Chuhan

期刊论文

Investigation of carbon dioxide photoreduction process in a laboratory-scale photoreactor by computational

期刊论文

AMMONIA DISPERSION FROM MULTI-FLOOR VERSUS STANDARD SINGLE-FLOOR PIG PRODUCTION FACILITIES BASED ON COMPUTATIONAL

期刊论文

Computational fluid dynamics simulation of aerosol transport and deposition

Yingjie TANG, Bing GUO

期刊论文

Introduction to the special section on the Symposium on Computational Fluid Dynamics and Molecular Simulation

Tianwei TAN, Peiyong QIN,

期刊论文

The effect of different agricultural management practices on irrigation efficiency, water use efficiency

La ZHUO, Arjen Y. HOEKSTRA

期刊论文

A time−space porosity computational model for concrete under sulfate attack

期刊论文

Stormwater treatment: examples of computational fluid dynamics modeling

Gaoxiang YING, John SANSALONE, Srikanth PATHAPATI, Giuseppina GAROFALO, Marco MAGLIONICO, Andrea BOLOGNESI, Alessandro ARTINA

期刊论文

Confinement effects in methanol to olefins catalysed by zeolites: A computational review

German Sastre

期刊论文

Evaluating R&D efficiency of China’s listed lithium battery enterprises

期刊论文

An investigation of ballistic response of reinforced and sandwich concrete panels using computational

Mohammad HANIFEHZADEH, Bora GENCTURK

期刊论文

Improving the efficiency and effectiveness of global phosphorus use: focus on root and rhizosphere levels

null

期刊论文